**Directions(1-5): **Find the next term of the following series.

- 12,33,96,285,?
800852832844850Option B

12*3 – 3 = 33

33*3 – 3 = 96

96*3- 3 = 285

285*3 – 3 = 852 - 49,51,63,93,?,239
134114140126149Option E

49 + 1*2 = 51

51 + 3*4 = 63

63 + 5*6 = 93

93 + 7*8 = 149

149 + 9*10 = 239 - 13, 17, 33, 97, ? ,1377
333353321325347Option B

13 + 2^2 = 17

17 + 4^2 = 33

33 + 8^2 = 97

97 + 16^2 = 353

353 + 32^2 = 1377 - 5, 12, 33, 136, 675, ?
40024040405640044041Option C

5 * 2 + 2 = 12

12 * 3 – 3 = 33

33 * 4 + 4 = 136

136 * 5 – 5 = 675

675 * 6 + 6 = 4056 - 20, 10, 12, 24, 75, ?
325.5295.4347.7452.6312.2Option A

20 * 0.5 – 0 = 10

10 * 1.5 – 3 = 12

12 * 2.5 – 6 = 24

24 * 3.5 – 9 = 75

75 * 4.5 – 12 = 325.5 - Quantity I. 2x^2 + 19x + 44= 0

Quantity II.2y^2 + 3y – 20 = 0Quantity I <= Quantity IIQuantity I > Quantity IIQuantity I < Quantity IIQuantity I => Quantity IIQuantity I = Quantity II or relation cannot be established.Option A

Quantity I. 2x^2 + 19x + 44= 0

=>(x + 4) (2x + 11) = 0

=> x = -4 , -11/2

Quantity II.2y^2 + 3y – 20 = 0

=>(y + 4) (2y – 5) = 0

=>y = -4 , 5/2

Quantity I <= Quantity II - Quantity I.(x+y)^2 = 900

Quantity II.y + 1689 = 1705Quantity I = Quantity II or relation cannot be established.Quantity I > Quantity IIQuantity I => Quantity IIQuantity I <= Quantity IIQuantity I < Quantity IIOption E

Quantity I.(x+y)^2 = 900

=>(x + y)2 = 900

=>x + y = 30

=>x = 30 – 16 = 14

Quantity II.y + 1689 = 1705

=>y = 1705 – 1689 = 16

Quantity I < Quantity II - Quantity I. x^2 – 27x + 182 = 0

Quantity II. y^2 – 36y + 323 = 0Quantity I > Quantity IIQuantity I => Quantity IIQuantity I < Quantity IIQuantity I <= Quantity IIQuantity I = Quantity II or relation cannot be established.Option C

Quantity I. x^2 – 27x + 182 = 0

=>x^2 – 27x + 182 = 0

=>x = 14, 13

Quantity II. y^2 – 36y + 323 = 0

=>y^2 – 36y + 323 = 0

=>y = 17, 19

Quantity I < Quantity II - Quantity I.x^2 – 22x + 120 = 0

Quantity II. y^2 – 26y + 168 = 0Quantity I < Quantity IIQuantity I => Quantity IIQuantity I = Quantity II or relation cannot be established.Quantity I > Quantity IIQuantity I <= Quantity IIOption E

Quantity I.x^2 – 22x + 120 = 0

=> x(x-10) – 12(x-10) = 0

=> x = 10 , 12

Quantity II. y^2 – 26y + 168 = 0

=> y (y-14) -12(y-14) =0

=> y = 14 , 12

Quantity I <= Quantity II - Quantity I. x^2 + 13x + 42 = 0

Quantity II. y^2 + 19y + 90 = 0Quantity I = Quantity II or relation cannot be established.Quantity I < Quantity IIQuantity I <= Quantity IIQuantity I > Quantity IIQuantity I => Quantity IIOption D

Quantity I. x^2 + 13x + 42 = 0

=> x(x+7) +6 (x+7) = 0

=> x = – 7 , – 6

Quantity II. y^2 + 19y + 90 = 0

=> y(y+10) + 9(y+10) = 0

=> y = – 10 , – 9

Quantity I > Quantity II