Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

- I.(x-3)(x+2) = 0

II. x^{2}– 27x + 182 = 0x>yy>xx>=yy>=xNone of theseOption B

I.(x-3)(x+2) = 0

=> x= -2,3

II.x^{2}– 27x + 182 = 0

=> y = 13,14

x>y - I. (x – 2)(x + 1) = (x – 1)(x + 3)

II. (y + 3)(y – 2) = (y + 1)(y + 2)x>yy>=xx>=yy>xNo relationOption A

I. (x – 2)(x + 1) = (x – 1)(x + 3)

=> x = 1/3

II. (y + 3)(y – 2) = (y + 1)(y + 2)

=> y = – 4

x>y - I. x
^{2}+ √3x + ¾ = 0

II. y^{2}– √3y – √2y + √6 = 0x>yy>=xNo relationy>xx>=yOption D

I. x^{2}+ √3x + ¾ = 0 => x2 + √3x + ¾ + (√3/2)2 – (√3/2)2 = 0

=> (x + √3/2)^{2}= 0

=> x = – √3/2 , – √3/2

II. y^{2}– √3y – √2y + √6 = 0

=>y^{2}– √3y – √2y + √6 = 0

=>y (y-√3) – √2(y-√3) = 0

=>(y-√2) (y-√3) = 0

=>y = 1.414, 1.732

y>x - I. 1/(x+4) – 1/(x-7) = 11/30

II. 1/(y-3) + 1/(y+5) = 1/3y>=xx>yy>=xNo relationy>xOption D

I. 1/(x+4) – 1/(x-7) = 11/30

=> x^{2}– 3x -28 = -30

=> x^{2}– 2x – x – 28 = -30

=> x = 1, 2

II. 1/(y-3) + 1/(y+5) = 1/3

=>y^{2}– 4y – 21 = 0

=> y = 7, -3

No relation - I. √2x
^{2}+ 7x + 5√2 = 0

II. 2y^{2}– y + 1/8 = 0x>=yy>xy>=xNo relationx>yOption B

I. √2x^{2}+ 7x + 5√2 = 0

=> √2x^{2}+ 2x + 5x + 5√2 = 0

=> x = -5√2/2 , -√2

II. 2y^{2}– y + 1/8 = 0

=> 16y^{2}– 8y + 1 = 0

=> y = 1/4 , 1/4

y>x - I. x(2x + 3) = 90

II.y^{2}+ (y + 1)^{2}= 365No relationy>xx>yx>=yy>=xOption A

I.x(2x + 3) = 90

=>x= -7.5,6

II. y^{2}+ (y + 1)2 = 365

=> y^{2}+ y^{2}+1 + 2y = 365

=> y^{2}+ y – 182 = 0

=> y = -14,13

No relation - I. √225x + √900 = 0

II.(81)^{1/4}y + (729)^{1/3}=0y>=xy>xx>=yNo relationx>yOption E

I. √225x + √900 = 0

=>15x = – 30

=> x= -2

II.(81)^{1/4}y + (729)^{1/3}=0

=> 3y = -9

=> y = -3

x >y - I. 55x
^{2}– 495x +1100 = 0

II. 5y^{2}+ 10y – 120 = 0y>=xx>=yNo relationy>xy>xOption B

I. 55x^{2}– 220x -275x +1100=0

=> x = 4,5

II. 5y^{2}+ 30y -20y – 120 =0

=> y = -6,4

x≥y - I. x
^{2}– 87x – 270 = 0

II.7y^{2}– 11y -18 = 0x>yNo relationx>=yy>xy>=xOption B

I. x^{2}-90x + 3x -270 =0

=> x = 90, -3

II. 7y^{2}-18y +7y -18 = 0

=> y = 18/7, -1

No relation - I. 2x
^{2}– x – 231 = 0

II. 2y^{2}+ 43y + 231 = 0x>yy>=xy>xx>=yNo relationOption D

I. 2x^{2}– 22x + 21x – 231 = 0

=> x = 11, -10.5

II. 2y^{2}+ 21y + 22y +231 = 0

=> y = -10.5 , -11

x≥y