# Quantitative Aptitude: Quadratic Equations Questions Set 47

Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

1. I. 2x2 – 17x + 36 = 0
II. 2y2 – 27y + 81 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option D
x = 4, 9/2 y = 9/2, 9

2. I. 2x2 + 9x + 9 = 0
II. 2y2 + y – 15 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option E
x = -3, -3/2 y = -3, 5/2

3. I. 4x2 – 9x – 9 = 0
II. 3y2 + 16y + 20 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option A
x = -3/4, 3 y = -10/3, -2

4. I. 4x2 + 4x – 3 = 0
II. 2y2 – 13y + 21 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option B
x = -3/2, 1/2 y = 3, 7/2

5. I. 2x2 – 9x – 11 = 0
II. 2y2 – 19y + 44 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option E
x = -1, 11/2 y = 4, 11/2

6. I. 3x2 + 4x – 7 = 0
II. 3y2 – 8y + 5 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option D
x = -7/3, 1 y = 1, 5/3

7. I. 3x2 – 10x – 8 = 0
II. 3y2 + 20y + 33 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option A
x = -2/3, 4 y = -11/3, -3

8. I. 3x2 – 7x – 20 = 0
II. 3y2 + 20y + 25 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option C
x = -5/3, 4 y = -5, -5/3

9. I. 3x2 – 16x + 16 = 0
II. 2y2 – 21y + 52 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option D
x = 4/3, 4 y = 4, 13/2

10. I. 3x2 + 11x + 10 = 0
II. 3y2 + 5y + 2 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option B
x = -1, -2/3 y = -5/3, -2