# Quantitative Aptitude: Quadratic Equations Questions Set 48

Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

1. I. 3x2 – 25x + 52 = 0
II. 3y2 – 17y + 20= 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

2. I. 3x2 – 14x + 15 = 0
II. 3y2 – 20y + 25= 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

3. I. 3x2 + 16x + 20= 0
II. 3y2 – 2y – 40 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

4. I. 3x2 + 5x – 50= 0
II. 3y2 – 22y + 40= 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

5. I. 2x2 – 13x + 20= 0
II. 2y2 + 7y – 15 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

6. I. 2x2 – 7x – 15= 0
II. 2y2 + 17y + 30= 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

7. I. 2x2 – 7x – 49 = 0
II. 2y2 + 17y + 35= 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

8. I. 2x2 + 15x + 27= 0
II. 3y2 + 4y – 15 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

9. I. 2x2 + 15x + 18 = 0
II. 2y2 – 5y – 25 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =

10. I. 3x2 + 11x – 20 = 0
II. 2y2 – 17y + 35 = 0
If x > y
If x < y
If x ≥ y
If x ≤ y
If x = y or relation cannot be established
Option
x = y =