Quantitative Aptitude: Quadratic Equations Questions Set 48

Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

  1. I. 3x2 – 25x + 52 = 0
    II. 3y2 – 17y + 20= 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  2. I. 3x2 – 14x + 15 = 0
    II. 3y2 – 20y + 25= 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  3. I. 3x2 + 16x + 20= 0
    II. 3y2 – 2y – 40 = 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  4. I. 3x2 + 5x – 50= 0
    II. 3y2 – 22y + 40= 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  5. I. 2x2 – 13x + 20= 0
    II. 2y2 + 7y – 15 = 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  6. I. 2x2 – 7x – 15= 0
    II. 2y2 + 17y + 30= 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  7. I. 2x2 – 7x – 49 = 0
    II. 2y2 + 17y + 35= 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  8. I. 2x2 + 15x + 27= 0
    II. 3y2 + 4y – 15 = 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  9. I. 2x2 + 15x + 18 = 0
    II. 2y2 – 5y – 25 = 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     

  10. I. 3x2 + 11x – 20 = 0
    II. 2y2 – 17y + 35 = 0
    If x > y
    If x < y
    If x ≥ y
    If x ≤ y
    If x = y or relation cannot be established
    Option
    x = y =

     


Related posts

Leave a Comment