Quant Questions Bank PO

Quantitative Aptitude: Quadratic Equations Set 27

Quadratic Equations Practice Sets for IBPS PO, IBPS RRB, LIC, UIICL, OICL, Bank of Baroda and other competitive exams.

Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

  1. I. 4x2 – x – 14 = 0,
    II. 2y2 – 13y + 20 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option B
    Solution: 

    4x2 – x – 14 = 0
    4x2 – 8x + 7x – 14 = 0
    Gives x = -7/4, 2
    2y2 – 13y + 20 = 0
    2y2 – 8y – 5y + 20 = 0
    Gives y = 5/2, 4
  2. I. 2x2 – 11x + 14 = 0,
    II. 3y2 + 13y + 14 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option A
    Solution: 

    2x2 – 11x + 14 = 0
    2x2 – 4x – 7x + 14 = 0
    Gives x = 2, 7/2
    3y2 + 13y + 14 = 0
    3y2 + 6y + 7y+ 14 = 0
    Gives y = -7/3, -2
  3. I. 3x2 + 14x + 15 = 0,
    II. 3y2 – 13y – 30 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option D
    Solution: 

    3x2 + 14x + 15 = 0
    3x2 + 9x + 5x + 15 = 0
    Gives x = -5/3, 6
    3y2 – 13y – 30 = 0
    3y2 – 18y + 5y – 30 = 0
    Gives y = -3, -5/3
  4. I. 3x2 + 28x + 60 = 0,
    II. 2y2 – 3y – 20 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option B
    Solution: 

    3x2 + 28x + 60 = 0
    3x2 + 18x + 10x + 60 = 0
    Gives x = -6, -10/3
    2y2 – 3y – 20 = 0
    2y2 – 8y + 5y – 20 = 0
    Gives y= -5/2, 4
  5. I. 3x2 – 8x – 35 = 0,
    II. 3y2 + 37y + 104 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option A
    Solution: 

    3x2 – 8x – 35 = 0
    3x2 – 15x + 7x – 35 = 0
    Gives x = 5, -7/3
    3y2 + 37y + 104 = 0
    3y2 + 24y + 13y + 104 = 0
    Gives y= -8, -13/3
  6. I. 3x2 – 5x – 78 = 0,
    II. 3y2 + 28y + 65 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option C
    Solution: 

    3x2 – 5x – 78 = 0
    3x2 – 18x + 13x – 78 = 0
    Gives x = -13/3, 6
    3y2 + 28y + 65 = 0
    3y2 + 15y + 13y + 65 = 0
    Gives y = -5, -13/3
  7. I. 3x2 – 7x – 40 = 0,
    II. 3y2 + 26y + 48 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option C
    Solution: 

    3x2 – 7x – 40 = 0
    3x2 – 15x + 8x – 40 = 0
    Gives x = -8/3, 5
    3y2 + 26y + 48 = 0
    3y2 + 18y + 8y + 48 = 0
    Gives y = -6, -8/3
  8. I. x2 + (4 + 2√2)x + 8√2 = 0
    II. 3y2 + (3 + 3√2)y + 3√2 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
    Option B
    Solution:

    x2 + (4 + 2√2)x + 8√2 = 0
    (x2 + 4x) + (2√2x + 8√2) = 0
    x (x + 4) + 2√2 (x + 4) = 0
    So x = -4, -2√2 (-2.8)
    3y2 + (3 + 3√2)y + 3√2 = 0
    (3y2 + 3y) + (3√2y + 3√2) = 0
    3y (y + 1) + 3√2 (y + 1) = 0
    So, y = -1, -√2 (-1.41)
  9. I. 6x2 – (3 + 4√3)x + 2√3 = 0,
    II. 4y2 – (2 + 4√3)y + 2√3 = 0
    A) x > y
    B) x < y
    C) x ≥ y
    D) x ≤ y
    E) x = y or relationship cannot be determined
    View Answer
    Option E
    Solution:

    6x2 – (3 + 4√3)x + 2√3 = 0
    (6x2 – 3x) – (4√3x – 2√3) = 0
    3x (2x- 1) – 2√3 (2x – 1) = 0,
    So x = 1/2 (0.5), 2√3/3 (1.16)
    4y2 – (2 + 4√3)y + 2√3 = 0
    (4y2 – 2y) – (4√3y – 2√3) = 0
    2y (2y – 1) – 2√3 (2y – 1) = 0
    So, y = 1/2 (0.5), √3 (1.73)
  10. I. x2 + (4 + 2√2)x + 8√2 = 0
    II. y2 – (2 + 3√3)y + 6√3 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
    Option B
    Solution:

    x2 + (4 + 2√2)x + 8√2 = 0
    (x2 + 4x) + (2√2x + 8√2) = 0
    x (x + 4) + 2√2 (x + 4) = 0
    So x = -4, -2√2 (-2.82)
    y2 – (2 + 3√3)y + 6√3 = 0
    (y2 – 2y) – (3√3y – 6√3) = 0
    y (y – 2) – 3√3 (y – 2) = 0
    So y = 2, 3√3 (5.2)

Click here for more Quadratic Equations Practice Sets

 

 

14 thoughts on “Quantitative Aptitude: Quadratic Equations Set 27”

  1. @MOD
    qsn 8
    2nd equation mai y ki value -1 & -root2 ayegi….
    So overall X<Y ans hoga…
    Do check

  2. ?Jab Harry Met Sejal?

    sir
    1st Ques me
    2*14 how we get factors 8 /2 or 5/2
    may be instead of 14 there is 20
    or instead of 13 there is 11
    2y^2 -13Y +14 = 0

  3. I think that what you typed was actually very reasonable.
    However, what about this? suppose you composed a catchier post title?
    I am not saying your content is not good, but suppose you added a headline that grabbed people’s attention? I mean Quantitative Aptitude:
    Quadratic Equations Set 27 – Aspirants Zone is a little boring.
    You ought to glance at Yahoo’s front page and watch how they write article titles to get viewers interested.
    You might add a related video or a picture or two to get people excited about what you’ve written. In my
    opinion, it would bring your posts a little livelier.

  4. Write more, thats all I have to say. Literally, it seems as
    though you relied on the video to make your point.

    You obviously know what youre talking about,
    why waste your intelligence on just posting videos to your site when you could be giving us something enlightening to
    read?

Comments are closed.