Quant Questions Bank PO

Quantitative Aptitude: Quadratic Equations Set 24

Quadratic Equations Practice Sets for IBPS PO, NICL, NIACL, LIC, Dena Bank PO PGDBF, BOI, Bank of Baroda and other competitive exams.

Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

  1. I. 5x2  – 18x + 9 =0
    II. 3y2 + 5y – 2 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option A
    Solution:

    5x2   – 18x + 9  = 0
    => 5x2  – 15x – 3x  + 9 =0
    => (5x – 3 )(x-3 )= 0
    => x=  3/ 5 or  x= 3
    3y2 + 5y – 2 = 0
    => 3y2  + 6y – y -2 = 0
    => (3y-1)(y + 2) = 0
    => y = 1/3  or  -2
  2. I. √x  – √6 / √x = 0
    II. y3 – 63/2  = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option E
    Solution: 

    √x  –   √6 / √x = 0
    x – √6 = 0
    x = √6
    y3   – 6 (3/2 )  = 0
    =>y3  = (√6)3
    => y = √6
  3. I. (625)1/4x + √1225  = 155
    II. √196y + 13  = 279
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option A
    Solution: 

    5x + 35 = 155
    => 5x = 155 – 35
    => x = 120/ 5 = 24√196 y  + 13 = 279
    => 14y = 279 -13
    => y = 266/14 =19
  4. I. 3x2 – 17x + 24 =0
    II. 4y2  – 15y + 14 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option A
    Solution: 

    3x2  -17x  + 24 =0
    => 3x2 – 9x  – 8x +24 = 0
    => (3x- 8)(x-3) = 0
    =>  x=  8/3 or 3
    4y2  – 15y + 14 = 0
    => 4y2  – 8y -7y +14 = 0
    => (4y -7 )(y-2)=0
    => y = 7 /4 or  2
  5. I. x2 – 2x – √5 x + 2√5 = 0
    II. y2 – √3 y – √2 y + √6 =0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option A
    Solution: 

    x2  – 2x- √5 x + 2√5 = 0
    => x(x-2 ) – √5 (x-2 )= 0
    => (x-2)(x-√5)=0
    => x= 2 0r √5
    y2  – √3 y  – √2 y + √6 =0
    => y(y-√3) – √2(y – √3) = 0
    => (y – √2)(y- √3) =0
    => y = √2 or √3
  6. I. 5x2 – 23x + 12 = 0,
    II. 5y2 – 28y + 15 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
     Option E
    Solution: 

    x = 3/5, 4
    y = 3/5, 5
  7. I. 6x2 + 5x – 6 = 0,
    II. 3y2 – 11y + 6 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
    Option D
    Solution:

    x = 2/3, 3
    y = -3/2, 2/3
  8. I. 3x2 – 5x – 12 = 0,
    II. 2y2 – 17y + 36 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
    Option B
    Solution:

    x = -4/3, 3
    y = 4, 9/2

  9. I. 8x2 – (4 + 4√3)x + 2√3 = 0,
    II. 3y2 – (4 + 3√3)y + 4√3 = 0
    A) x > y
    B) x < y
    C) x ≥ y
    D) x ≤ y
    E) x = y or relationship cannot be determined
    View Answer
    Option B
    Solution:

    8x2 – (4 + 4√3)x + 2√3 = 0
    (8x2 – 4x) – (4√3x – 2√3) = 0
    4x (2x- 1) – 2√3 (2x – 1) = 0,
    So x = 1/2 (0.5), 2√3/4 (0.87)
    3y2 – (4 + 3√3)y + 4√3 = 0
    (3y2 – 4y) – (3√3y – 4√3) = 0
    y (3y – 4) – √3 (3y – 4) = 0
    So, y = √3 (1.732), 4/3
    put on number line
    0.5………..0.87……..4/3………1.732
  10. I. x2 + (4 + 2√2)x + 8√2 = 0
    II. 3y2 – (3 + √3)y + √3 = 0
    A) If x > y
    B) If x < y
    C) If x ≥ y
    D) If x ≤ y
    E) If x = y or relation cannot be established
    View Answer
    Option B
    Solution:

    x2 + (4 + 2√2)x + 8√2 = 0
    (x2 + 4x) + (2√2x + 8√2) = 0
    x (x + 4) + 2√2 (x + 4) = 0
    So x = -4, -2√2 (-2.8) 
    3y2 – (3 + √3)y + √3 = 0
    (3y2 – 3y) – (√3y – √3) = 0
    3y (y – 1) – √3 (y – 1) = 0
    So y = 1, √3/3 (0.57)

Click here for more Quadratic Equations Practice Sets

 

 

29 thoughts on “Quantitative Aptitude: Quadratic Equations Set 24”

      1. Mam question 6me ,x=3/5,4 and y=3/5,5 to eska answer no relation kese Hua .Y bda ya equal hona chahiye.ye question mujhse hmesha wrong ho hate h.why no relation?

      2. value of x is same but value of y coming 2/3,-1 please check my eq can i make it as 3y^2+3y+2y-2=0

  1. 8/10 Thx az
    Queno 5 option should be A
    Que 6 2nd statement 5y^2-28y+15=0 he chahiye

    1. What doubt ?
      See 9th solution.
      U have to take without root values together
      And with root s values together
      And then take common like in 2nd step in 9th.

      See again. Ask if doubt

      1. वैम्पायर हंटर

        Wo 6th ke 2nd equtn me sign minus minus hh
        To fr value dono plus me likh rkhe ho ye bol rha hun…

  2. Hi, I think your website might be having browser compatibility issues.

    When I look at your website in Firefox, it looks fine but
    when opening in Internet Explorer, it has some
    overlapping. I just wanted to give you a quick heads up!
    Other then that, fantastic blog!

  3. Please let me know if you’re looking for a writer for
    your site. You have some really good articles and I think I would be a
    good asset. If you ever want to take some of the load off, I’d absolutely love to write some material for
    your blog in exchange for a link back to mine. Please
    shoot me an email if interested. Regards!

Comments are closed.