Quantitative Aptitude: Quadratic Equations Questions Set 62

  1. I. 10x2+9x+2=0
    II. 6y2– 27y-15=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option D
    10x2+9x+2=0
    10x2 + 5x+ 4x+2=0
    5x(2x +1) + 2(2x +1)=0
    (2x+1) ( 5x+2)=0
    x= -1/2 , -2/5
    6y2– 27y-15=0
    6y2 -30y+ 3y -15=0
    6y( y-5) + 3(y-5)=0
    (y-5) ( 6y+3)=0
    y= 5, -3/6
    Hence y≥x

     

  2. I. 35x2+27x+4=0
    II. 9y2– 3y-2=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option E
    35x2+27x+4=0
    35x2 + 20x+ 7x+4=0
    5x(7x +4) + 1(7x +4)=0
    (7x+4) ( 5x+1)=0
    x= -4/7 , -1/5
    9y2– 3y-2=0
    9y2 -6y+ 3y -2=0
    3y( 3y-2) + 1(3y-2)=0
    (3y-2) ( 3y+1)=0
    y= 2/3,- 1/3
    Hence the relation cannot be determined

     

  3. I. 35x2-4x-15=0
    II. 10y2+129y-13=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option A
    35x2-4x-15=0
    35x2 – 25x+ 21x-15=0
    5x(7x -5) + 3(7x -5)=0
    (7x-5) ( 5x+3)=0
    x= 5/7 , -3/5
    10y2+129y-13=0
    10y2 -y+ 130y -13=0
    y( 10y-1) + 13(10y-1)=0
    (10y-1) ( y+13)=0
    y= 1/10,- 13
    Hence x>y

     

  4. I. 10x2 +79x+63=0
    II. 20y2+3y-2=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    10x2+79x+63=0
    10x2 +70x+9x+63=0
    10x(x +7) + 9(x +7)=0
    (x+7) ( 10x+9)=0
    x= -7 , -9/10
    20y2+3y-2=0
    20y2 -5y+ 8y -2=0
    5y( 4y-1) + 2(4y-1)=0
    (4y-1) ( 5y+2)=0
    y= 1/4, -2/5
    Hence y>x

     

  5. I. 2x2-31x= -120
    II. 8y2-74y=-143
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option A
    2x2-31x= -120
    2x2 -16x-15x+120=0
    2x(x -8) -15(x -8)=0
    (x-8) ( 2x-15)=0
    x= 8 , 15/2
    8y2-74y=-143
    8y2 -22y-52y+143 =
    2y( 4y-11) -13(4y-11)=0
    (4y-11) ( 2y-13)=0
    y= 11/4, 13/2
    Hence x>y

     

  6. I. 8x2+41x+5=0
    II. 49y2-49y-18=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    8x2+41x+5=0
    8x2 +40x+x+5=0
    8x(x +5) + 1(x +5)=0
    (x+5) ( 8x+1)=0
    x= -5 , -1/8
    49y2-49y-18=0
    49y2 -63y+ 14y -18=0
    7y( 7y-9) + 2(7y-9)=0
    (7y-9) ( 7y+2)=0
    y= 9/7, -2/7
    Hence y>x ( 9/7> -1/8) and( -2/7 > -5)

     

  7. I. 40x2-59x+21=0
    II. 14y2+45y-14=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option A
    40x2-59x+21=0
    40x2 -24x-35x+21=0
    8x(5x -3) -7(5x -3)=0
    (5x-3) ( 8x-7)=0
    x= 3/5 , 7/8
    14y2+45y-14=0
    14y2 +49y- 4y -14=0
    7y( 2y+7) – 2(2y+7)=0
    (2y+7) ( 7y-2)=0
    y= -7/2, 2/7
    Hence x>y

     

  8. I. 40x2-13x+1=0
    II. 10y2-11y-6=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option E
    40x2-13x+1=0
    40x2 -8x-5x+1=0
    8x(5x -1) -1(5x -1)=0
    (5x-1) ( 8x-1)=0
    x= 1/5 , 1/8
    10y2-11y-6=0
    10y2 -15y+4y -6=0
    5y( 2y-3) +2(2y-3)=0
    (2y-3) ( 5y+2)=0
    y= 3/2, -2/5
    Hence the relation cannot be determined

     

  9. I. 10x2-9x+2=0
    II. 6y2+ 27y-15=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option B
    10x2-9x+2=0
    10x2 – 5x- 4x+2=0
    5x(2x -1) – 2(2x -1)=0
    (2x-1) ( 5x-2)=0
    x= 1/2 , 2/5
    6y2+ 27y-15=0
    6y2 +30y-3y -15=0
    6y( y+5) – 3(y+5)=0
    (y+5) ( 6y-3)=0
    y= -5, +3/6
    Hence x≥y

     

  10. I. 35x2+51x+18=0
    II. 9y2 =1
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    35x2+51x+18=0
    35x2 + 30x+ 21x+18=0
    5x(7x +6) + 3(7x +6)=0
    (7x+6) ( 5x+3)=0
    x= -6/7 , -3/5
    9y2 =1
    9y2-1=0
    (3y-1) ( 3y+1)=0
    y= 1/3,- 1/3
    Hence y>x

     

  11. I. 35x2+16x-3=0
    II. 10y2+136y-56=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option E
    35x2+16x-3=0
    35x2 -5x+ 21x-3=0
    5x(7x -1) + 3(7x -1)=0
    (7x-1) ( 5x+3)=0
    x= 1/7 , -3/5
    10y2+136y-56=0
    10y2 -4y+ 140y -56=0
    y( 10y-4) + 14(10y-4)=0
    (10y-4) ( y+14)=0
    y= 4/10,- 14
    Hence the relation cannot be determined

     

  12. I. 10x2-136x-14=0
    II. 25y2-10y-8=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option A
    10x2-136x-14=0
    10x2 -140x+x-14=0
    10x(x -14) + 1(x -14)=0
    (x-14) ( 10x+1)=0
    x= +14 , -1/10
    25y2-10y-8=0
    25y2 -20y+ 10y -8=0
    5y( 5y-4) + 2(5y-4)=0
    (5y-4) ( 5y+2)=0
    y= 5/4, -2/5
    Hence x>y

     

  13. I. 11x2+120x= 11
    II. 8y2+74y+143=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option E
    11x2+120x= 11
    11x2 +121x-x-11=0
    11x(x +11) -1(x +11)=0
    (x+11) ( 11x-1)=0
    x=- 11 , 1/11
    8y2+74y+143=0
    8y2 +22y+52y+143 =
    2y( 4y+11) +13(4y+11)=0
    (4y+11) ( 2y+13)=0
    y= -11/4, -13/2
    Hence the relation cannot be determined

     

  14. I. 8x2+51x +18=0
    II. 49y2-1=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    8x2+51x+18=0
    8x2 +48x+3x+18=0
    8x(x +6) + 3(x +6)=0
    (x+6) ( 8x+3)=0
    x= -6 , -3/8
    49y2-1=0
    (7y-1) ( 7y+1)=0
    y= 1/7, -1/7
    Hence y>x

     

  15. 40x2-13x+1=0
    18y2+77y-18=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option B
    40x2-13x+1=0
    40x2 -8x-5x+1=0
    8x(5x -1) -1(5x -1)=0
    (5x-1) ( 8x-1)=0
    x= 1/5 , 1/8
    18y2+77y-18=0
    18y2 +81y- 4y -18=0
    9y( 2y+9) – 2(2y+9)=0
    (2y+9) ( 9y-2)=0
    y= -9/2, 2/9
    Hence x ≥ y

     

  16. I. 16x2+60x+14=0
    II. 8y2– 77y-30=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    16x2+60x+14=0
    16x2 + 56x+ 4x+14=0
    8x(2x +7) + 2(2x +7)=0
    (2x+7) ( 8x+2)=0
    x= -7/2 , -2/8
    8y2– 77y-30=0
    8y2 -80y+ 3y -30=0
    8y( y-10) + 3(y-10)=0
    (y-10) ( 8y+3)=0
    y= 10, -3/8
    Hence y>x

     

  17. I. 35x2+32x+5=0
    II. 9y2– 20y+24=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    35x2+32x+5=0
    35x2 + 25x+ 7x+5=0
    5x(7x +5) + 1(7x +5)=0
    (7x+5) ( 5x+1)=0
    x= -5/7 , -1/5
    9y2– 36y+32=0
    9y2 -12y-24y +32=0
    3y( 3y-4) -8(3y-4)=0
    (3y-4) ( 3y-8)=0
    y= 4/3, 8/3
    Hence y>x

     

  18. I. 35x2-18x-81=0
    II. 10y2+184y-114=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option A
    35x2-18x-81=0
    35x2 – 45x+ 63x-81=0
    5x(7x -9) + 9(7x -9)=0
    (7x-9) ( 5x+9)=0
    x= 9/7 , -9/5
    10y2+184y-114=0
    10y2 -6y+ 190y -114=0
    y( 10y-6) + 19(10y-6)=0
    (10y-6) ( y+19)=0
    y= 6/10,- 19
    Hence x>y

     

  19. I. 10x2+79x+63=0
    II.2+10y-2=0
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option C
    10x2+79x+63=0
    10x2 +70x+9x+63=0
    10x(x +7) + 9(x +7)=0
    (x+7) ( 10x+9)=0
    x= -7 , -9/10
    48y2+10y-2=0
    48y2 -6y+ 16y -2=0
    6y( 8y-1) + 2(8y-1)=0
    (8y-1) ( 6y+2)=0
    y= 1/8, -2/6
    Hence y>x

     

  20. I. 2x2-18x= -17
    II. 2-97y=-117
    x > y
    x ≥ y
    x < y
    x ≤ y
    x = y or Cannot be determined.
    Option E
    2x2-35x= -17
    2x2 -34x-1x+17=0
    2x(x -17) -1(x -17)=0
    (x-17) ( 2x-1)=0
    x= 17 , 1/2
    20y2-97y=-117
    20y2 -45y-52y+117 =
    5y( 4y-9) -13(4y-9)=0
    (4y-9) ( 5y-13)=0
    y= 9/4, 13/5
    Hence the relation cannot be determined

     

Related posts

One Thought to “Quantitative Aptitude: Quadratic Equations Questions Set 62”

  1. Thanks for the thoughts you are discussing on this site. Another thing I would really like to say is always that getting hold of copies of your credit rating in order to scrutinize accuracy of each detail is the first step you have to perform in credit improvement. You are looking to clear your credit reports from damaging details problems that mess up your credit score.

Leave a Comment