# Quantitative Aptitude: Quadratic Equations Set 2

### Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

1. I. 4x2 + 27x + 18 = 0,
II. 2y2 â€“ 7y + 3 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option B
Solution:

4x2 + 27x + 18 = 0
4x2 + 24x + 3x + 18 = 0
So x = -3/4, -6
2y2 â€“ 7y + 3 = 0
2y2 â€“ 6y â€“ y + 3 = 0
So y = 1/2, 3
Put all values on number line and analyze the relationship
-6â€¦ -3/4â€¦ 1/2â€¦ 3
2. I. 3x2 â€“ 2x â€“ 8 = 0,
II. 6y2 â€“ 17y + 10 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option D
Solution:

3x2 â€“ 2x â€“ 8 = 0
3x2 â€“ 6x + 4x â€“ 8 = 0
So x = -4/3, 2
6y2 â€“ 17y + 10 = 0
6y2 â€“ 12y â€“ 5y + 10 = 0
So y = 5/6, 2
Put all values on number line and analyze the relationship
-4/3â€¦ 2â€¦ 5/6
3. I. 32 + 11x + 6 = 0,
II. 5y2 + 16y + 3 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option E
Solution:

32 + 11x + 6 = 0
32 + 9x + 2x + 6 = 0
So x = -3, -2/3
5y2 + 16y + 3 = 0
5y2 + 15y + y + 3 = 0
So y = -1/5, -3
Put all values on number line and analyze the relationship
-3 â€¦. -2/3 â€¦.-1/5
Since the common value (-3) is not in between other 2 values, there is no relationship between x and y.
4. I. 4x2 â€“ 11x + 6 = 0,
II. 6y2 â€“ 29y + 28 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option E
Solution:

4x2 â€“ 11x + 6 = 0
4x2 â€“ 8x â€“ 3x + 6 = 0
So x = 3/4, 2
6y2 â€“ 29y + 28 = 0
6y2 â€“ 8y â€“ 21y + 28 = 0
So y = 4/3, 7/2
Put all values on number line and analyze the relationship
3/4 â€¦. 4/3â€¦.. 2â€¦. 7/2
5. I. 3x2 â€“ 25x + 52 = 0,
II. 3y2 â€“ 8y â€“ 16 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option C
Solution:

3x2 â€“ 25x + 52 = 0
3x2 â€“ 12x â€“ 13x + 52 = 0
So x = 4, 13/3
3y2 â€“ 8y â€“ 16 = 0
3y2 â€“ 12y + 4y â€“ 16 = 0
So y = 4, -4/3
Put all values on number line and analyze the relationship
-4/3 â€¦. 4â€¦. 13/3
6. I. 8x2 + 10x + 3 = 0,
II. 3y2 + 70y + 40 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option A
Solution:

8x2 + 10x + 3 = 0
8x2 + 4x + 6x + 3 = 0
So x = -3/4, -1/2
3y2 + 70y + 40 = 0
3y2 + 30y + 40y + 40 = 0
So y = -10, -4/3
Put all values on number line and analyze the relationship
-10 â€¦ -4/3 â€¦. -3/4 â€¦. -1/2
7. I. 50x2 Â¬Â¬â€“ 95x + 42 = 0,
II. 50y2 â€“ 65y + 21 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relationship cannot be determined
Option C
Solution:

50x2 Â¬Â¬â€“ 95x + 42 = 0
50x2 Â¬Â¬â€“ 60x â€“ 35x + 42 = 0
So x = 7/10, 6/5
50y2 â€“ 65y + 21 = 0
50y2 â€“ 65y + 21 = 0
So y = 3/5, 7/10
Put all values on number line and analyze the relationship
3/5â€¦. 7/10â€¦. 6/5
8. I. 5x2 â€“ 13x + 6 = 0,
II. 3y2 â€“ 22y â€“ 35 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option B
Solution:

5x2 â€“ 13x + 6 = 0
5x2 â€“ 10x â€“ 3x + 6 = 0
So x = 3/5, 2
3y2 â€“ 22y â€“ 35 = 0
3y2 â€“ 15y â€“ 7y â€“ 35 = 0
So y = 7/3, 5
Put all values on number line and analyze the relationship
3/5â€¦. 2â€¦. 7/3â€¦ 5
9. I. 3x2 â€“ 4x â€“ 15 = 0,
II. 5y2 â€“ 11y â€“ 18 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relation cannot be established
Option E
Solution:

3x2 â€“ 4x â€“ 15 = 0
3x2 â€“ 9x + 5x â€“ 15 = 0
So x = -5/3, 3
5y2 â€“ 11y â€“ 18 = 0
5y2 â€“ 15y + 6y â€“ 18 = 0
So y = -6/5, 3
Put all values on number line and analyze the relationship
-5/3â€¦.. -6/5â€¦. 3
Since the common value (3) is not in between other 2 values, there is no relationship between x and y.
10. I. 2x2 + 5x â€“ 12 = 0,
II. 2y2 â€“ 19y + 35 = 0

A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relationship cannot be determined
Option B
Solution:

2x2 + 5x Â¬â€“ 12 = 0
2x2 + 8x Â¬â€“ 3x â€“ 12 = 0
So x = -4 , 3/2
2y2 â€“ 19y + 35 = 0
2y2 â€“ 14y â€“ 5y + 35 = 0
So y = 5/2, 7
Put all values on number line and analyze the relationship
-4â€¦â€¦. 3/2â€¦â€¦ 5/2â€¦

## 14 Thoughts to “Quantitative Aptitude: Quadratic Equations Set 2”

1. ^^^Jaga^^^....

_/_

2. Laughing tym its nitrous oxide

TQ ðŸ™‚

3. Laughing tym its nitrous oxide

II. 3y2 â€“ 22y â€“ 35 = 0
MIGHT M=BE
II. 3y2 â€“ 22y + 35 = 0

1. Laughing tym its nitrous oxide

Means question recheck krna yeh wala
Ek bar

4. Laughing tym its nitrous oxide

MAM
II. 3y2 + 70y + 40 = 0
ITS FACTOR ARE
3*2*2*2*5
3y2 + 30y + 40y + 40 = 0
So y = -10, -4/3 SOLUTION GIVEN
MAM WE HAVE TO DO IT WITH FORMULA .???
AX+-ROOTD/4AC LIKE THAT one ??

1. Formula is not required.
Par agar lag rha hai ki roots nhi nikl pa rhe to use that
Exam me 4 out of 5 me calculation kam hi hoti hai.

1. Laughing tym its nitrous oxide

Tq mam

2. arun praveen s

Question 6 is wrong.i think.

5. sachin kumar

ans of q.2 is wrong it should be E.

1. arun praveen s

No. Its correct

6. sachin kumar

ans of q8 should be E.

1. arun praveen s

Ya. But the question is wrong

7. Ayushi Srivastava

tyy