# Quantitative Aptitude: Quadratic Equations Set 25

Quadratic Equations Practice Sets for IBPS PO, NICL, NIACL, LIC, Dena Bank PO PGDBF, BOI, Bank of Baroda and other competitive exams.

Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-

1. I. 3x2Â – 5x – 12 = 0,
II. 3y2Â + 22y + 24 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option C
Solution:Â

3x2Â – 5x – 12 = 0
3x2Â – 9x + 4x – 12 = 0
Gives x = -4/3, 3
3y2Â + 22y + 24 = 0
3y2Â + 18y + 4y + 24 = 0
Gives y = -6, -4/3
2. I. 3x2Â – 2x – 8 = 0,
II. 3y2Â – 8y –Â 16 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option E
Solution:Â

3x2Â – 2x – 8 = 0
3x2Â – 6x + 4x – 8 = 0
Gives x = -4/3, 2Â
3y2Â – 8y â€“ 16 = 0
3y2Â – 12y + 4y â€“ 16 = 0
Gives y = -4/3, 1
3. I. 3x2Â – 7x –Â 6 = 0,
II. 3y2Â + 20y + 25 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option A
Solution:Â

3x2Â â€“ 7x â€“ 6 = 0
3x2Â â€“ 9x + 2x â€“ 6 = 0
Gives x = -2/3, 3
3y2Â + 20y + 25 = 0
3y2Â + 15y + 5y + 25 = 0
Gives y = -5, -5/3
4. I. 4x2Â + 13x –Â 12 = 0,
II. 3y2Â – 7y – 6 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option E
Solution:Â

4x2Â + 13x â€“ 12 = 0
4x2Â + 16x – 3x â€“ 12 = 0
Gives x = -4, 3/4
3y2Â â€“ 7y – 6 = 0
3y2Â â€“ 9y + 2y – 6 = 0
Gives y= -2/3, 3
5. I. 3x2Â + 20x + 32 = 0,
II. 3y2Â + 14y + 16 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option D
Solution:Â

3x2Â + 20x + 32 = 0
3x2Â + 12x + 8x + 32 = 0
Gives x =Â -4, -8/3
3y2Â + 14y + 16 = 0
3y2Â + 6y + 8y + 16 = 0
Gives y= -8/3, -2
6. I. 2x2Â – x – 15 = 0,
II. 3y2Â – 25y + 52 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option B
Solution:Â

2x2Â – x – 15 = 0
2x2Â – 6x + 5x – 15 = 0
Gives x = -5/2, 3
3y2Â – 25y + 52 = 0
3y2Â – 12y – 13y + 52 = 0
Gives y =Â 4, 13/3
7. I. 4x2Â – 9x – 28 = 0,
II. 4y2Â + 19y + 21 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Â Option C
Solution:Â

4x2Â – 9x – 28 = 0
4x2Â – 16x + 7x – 28 = 0
Gives x = -7/4, 4
4y2Â + 19y + 21 = 0
4y2Â + 12y +7y + 21 = 0
Gives y = -3, -7/4
8. I. 2x2 + (4 + 2âˆš2)x + 4âˆš2 = 0
II. y2 + (3 + âˆš2)y + 3âˆš2 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Option E
Solution:

2x2 + (4 + 2âˆš2)x + 4âˆš2 = 0
(2x2 + 4x) + (2âˆš2x + 4âˆš2) = 0
2x (x + 2) + 2âˆš2 (x + 2) = 0
So x = -2, -âˆš2 (-1.4)
y2 + (3 + âˆš2)y + 3âˆš2 = 0
(y2 + 3y) + (âˆš2y + 3âˆš2) = 0
y (y + 3) + âˆš2 (y + 3) = 0
So, y = -3 (-0.4), -âˆš2 (-1.4)
9. I. 3x2 â€“ (1 + 6âˆš3)x + 2âˆš3 = 0,
II. 4y2 â€“ (2 + 2âˆš3)y + âˆš3 = 0
A) x > y
B) x < y
C) x â‰¥ y
D) x â‰¤ y
E) x = y or relationship cannot be determined
Option E
Solution:

3x2 â€“ (1 + 6âˆš3)x + 2âˆš3 = 0
(3x2 – x) â€“ (6âˆš3x – 2âˆš3) = 0
x (3x- 1) – 2âˆš3 (3x â€“ 1) = 0,
So x = 1/3, 2âˆš3 (3.5)
4y2 â€“ (2 + 2âˆš3)y + âˆš3 = 0
(4y2 â€“ 2y) – (2âˆš3y – âˆš3) = 0
2y (2y â€“ 1) – âˆš3 (2y – 1) = 0
So, y = 1/2, âˆš3/2 (0.86)
10. I. 8x2 + (4 + 2âˆš2)x + âˆš2 = 0
II. y2 â€“ (3 + âˆš3)y + 3âˆš3 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Option B
Solution:

8x2 + (4 + 2âˆš2)x + âˆš2 = 0
(8x2 + 4x) + (2âˆš2x + âˆš2) = 0
4x (2x + 1) + âˆš2 (2x + 1) = 0
So x = -1/2 (-0.5), -âˆš2/4 (-0.35)
y2 – (3 + âˆš3)y + 3âˆš3 = 0
(y2 – 3y) â€“ (âˆš3y – 3âˆš3) = 0
y (y â€“ 3) – âˆš3 (y â€“ 3) = 0
So y = 3, âˆš3 (1.73)

## 15 Thoughts to “Quantitative Aptitude: Quadratic Equations Set 25”

1. Sachin Shukla

3×2 â€“ 7x â€“ 6 = 0,
II. 3y2 + 20y + 25 = 0
A) If x > y
B) If x < y
C) If x â‰¥ y
D) If x â‰¤ y
E) If x = y or relation cannot be established
Option E
Solution:
3×2 â€“ 7x â€“ 6 = 0
3×2 â€“ 9x + 2x â€“ 6 = 0
Gives x = -2/3, 3
3y2 + 20y + 25 = 0
3y2 + 15y + 5y + 25 = 0
Gives y = -5, -5/3

1. Sachin Shukla

x>y

2. thinker

X bda hona chahiye na question wrong h

2. Sachin Shukla

10/10 ty:))

3. thinker

9/10

4. M@nish...

in Q 3 ans should be x>y

5. Jeetesh Chandra

9/10..

6. AVIâ„¢ (Sinchen loveR)

in Q2 yâ‰¥x hona chaheye
X = +2, -4/3
Y=+4,-4/3

in Q3 Xâ‰¥Y hona chaheye
x=+3, -2/3
y=-5,-5/3
9/10 ty,,ty,,

7. EKTA

10/10

8. Randy Ortonâ„¢????

100% thnx az

9. Ayushi

thanxx ðŸ™‚

10. Bahot ho gaya

Thanks ðŸ™‚ love this website

11. ~lonely~hanker~nitrous oxide~

tq mam

12. Chotu D(mind) !! {NONSENSE}

done

13. 348517 517564What others have stated and in some uncommon cases, suicide may occur. 360569